Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1528, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453906

RESUMO

The toll-like receptor 4 (TLR4) is a central regulator of innate immunity that primarily recognizes bacterial lipopolysaccharide cell wall constituents to trigger cytokine secretion. We identify the intramembrane protease RHBDL4 as a negative regulator of TLR4 signaling. We show that RHBDL4 triggers degradation of TLR4's trafficking factor TMED7. This counteracts TLR4 transport to the cell surface. Notably, TLR4 activation mediates transcriptional upregulation of RHBDL4 thereby inducing a negative feedback loop to reduce TLR4 trafficking to the plasma membrane. This secretory cargo tuning mechanism prevents the over-activation of TLR4-dependent signaling in an in vitro Mycobacterium tuberculosis macrophage infection model and consequently alleviates septic shock in a mouse model. A hypomorphic RHBDL4 mutation linked to Kawasaki syndrome, an ill-defined inflammatory disorder in children, further supports the pathophysiological relevance of our findings. In this work, we identify an RHBDL4-mediated axis that acts as a rheostat to prevent over-activation of the TLR4 pathway.


Assuntos
Transdução de Sinais , Receptor 4 Toll-Like , Animais , Criança , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Regulação para Baixo , Lipopolissacarídeos/metabolismo , Receptor 4 Toll-Like/metabolismo
2.
Cell Mol Life Sci ; 81(1): 102, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409522

RESUMO

The protease ADAM17 plays an important role in inflammation and cancer and is regulated by iRhom2. Mutations in the cytosolic N-terminus of human iRhom2 cause tylosis with oesophageal cancer (TOC). In mice, partial deletion of the N-terminus results in a curly hair phenotype (cub). These pathological consequences are consistent with our findings that iRhom2 is highly expressed in keratinocytes and in oesophageal cancer. Cub and TOC are associated with hyperactivation of ADAM17-dependent EGFR signalling. However, the underlying molecular mechanisms are not understood. We have identified a non-canonical, phosphorylation-independent 14-3-3 interaction site that encompasses all known TOC mutations. Disruption of this site dysregulates ADAM17 activity. The larger cub deletion also includes the TOC site and thus also dysregulated ADAM17 activity. The cub deletion, but not the TOC mutation, also causes severe reductions in stimulated shedding, binding, and stability of ADAM17, demonstrating the presence of additional regulatory sites in the N-terminus of iRhom2. Overall, this study contrasts the TOC and cub mutations, illustrates their different molecular consequences, and reveals important key functions of the iRhom2 N-terminus in regulating ADAM17.


Assuntos
Proteínas de Transporte , Neoplasias Esofágicas , Ceratodermia Palmar e Plantar , Humanos , Camundongos , Animais , Fosforilação , Proteínas de Transporte/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Transdução de Sinais/genética , Mutação , Neoplasias Esofágicas/genética
3.
iScience ; 26(12): 108309, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38025784

RESUMO

Rhodopsin-1 (Rh1), the main photosensitive protein of Drosophila, is a seven-transmembrane domain protein, which is inserted co-translationally in the endoplasmic reticulum (ER) membrane. Biogenesis of Rh1 occurs in the ER, where various chaperones interact with Rh1 to aid in its folding and subsequent transport from the ER to the rhabdomere, the light-sensing organelle of the photoreceptors. Xport-A has been proposed as a chaperone/transport factor for Rh1, but the exact molecular mechanism for Xport-A activity upon Rh1 is unknown. Here, we propose a model where Xport-A functions as a chaperone during the biogenesis of Rh1 in the ER by stabilizing the first five transmembrane domains (TMDs) of Rh1.

4.
Mol Metab ; 73: 101731, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121509

RESUMO

OBJECTIVE: The metalloprotease ADAM17 (also called TACE) plays fundamental roles in homeostasis by shedding key signaling molecules from the cell surface. Although its importance for the immune system and epithelial tissues is well-documented, little is known about the role of ADAM17 in metabolic homeostasis. The purpose of this study was to determine the impact of ADAM17 expression, specifically in adipose tissues, on metabolic homeostasis. METHODS: We used histopathology, molecular, proteomic, transcriptomic, in vivo integrative physiological and ex vivo biochemical approaches to determine the impact of adipose tissue-specific deletion of ADAM17 upon adipocyte and whole organism metabolic physiology. RESULTS: ADAM17adipoq-creΔ/Δ mice exhibited a hypermetabolic phenotype characterized by elevated energy consumption and increased levels of adipocyte thermogenic gene expression. On a high fat diet, these mice were more thermogenic, while exhibiting elevated expression levels of genes associated with lipid oxidation and lipolysis. This hypermetabolic phenotype protected mutant mice from obesogenic challenge, limiting weight gain, hepatosteatosis and insulin resistance. Activation of beta-adrenoceptors by the neurotransmitter norepinephrine, a key regulator of adipocyte physiology, triggered the shedding of ADAM17 substrates, and regulated ADAM17 expression at the mRNA and protein levels, hence identifying a functional connection between thermogenic licensing and the regulation of ADAM17. Proteomic studies identified Semaphorin 4B (SEMA4B), as a novel ADAM17-shed adipokine, whose expression is regulated by physiological thermogenic cues, that acts to inhibit adipocyte differentiation and dampen thermogenic responses in adipocytes. Transcriptomic data showed that cleaved SEMA4B acts in an autocrine manner in brown adipocytes to repress the expression of genes involved in adipogenesis, thermogenesis, and lipid uptake, storage and catabolism. CONCLUSIONS: Our findings identify a novel ADAM17-dependent axis, regulated by beta-adrenoceptors and mediated by the ADAM17-cleaved form of SEMA4B, that modulates energy balance in adipocytes by inhibiting adipocyte differentiation, thermogenesis and lipid catabolism.


Assuntos
Adipocinas , Semaforinas , Animais , Camundongos , Adipócitos Marrons/metabolismo , Adipocinas/metabolismo , Diferenciação Celular , Lipídeos , Proteômica , Receptores Adrenérgicos beta/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Termogênese/fisiologia
5.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36720499

RESUMO

The metalloprotease ADAM17 is a sheddase of key molecules, including TNF and epidermal growth factor receptor ligands. ADAM17 exists within an assemblage, the "sheddase complex," containing a rhomboid pseudoprotease (iRhom1 or iRhom2). iRhoms control multiple aspects of ADAM17 biology. The FERM domain-containing protein iTAP/Frmd8 is an iRhom-binding protein that prevents the precocious shunting of ADAM17 and iRhom2 to lysosomes and their consequent degradation. As pathophysiological role(s) of iTAP/Frmd8 have not been addressed, we characterized the impact of iTAP/Frmd8 loss on ADAM17-associated phenotypes in mice. We show that iTAP/Frmd8 KO mice exhibit defects in inflammatory and intestinal epithelial barrier repair functions, but not the collateral defects associated with global ADAM17 loss. Furthermore, we show that iTAP/Frmd8 regulates cancer cell growth in a cell-autonomous manner and by modulating the tumor microenvironment. Our work suggests that pharmacological intervention at the level of iTAP/Frmd8 may be beneficial to target ADAM17 activity in specific compartments during chronic inflammatory diseases or cancer, while avoiding the collateral impact on the vital functions associated with the widespread inhibition of ADAM17.


Assuntos
Neoplasias , Animais , Camundongos , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Inflamação , Neoplasias/genética , Microambiente Tumoral
6.
FEBS J ; 289(22): 6822-6831, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36377590

RESUMO

The major criterion that distinguishes eukaryotes from prokaryotes is the presence of organelles in the former. Organelles provide a compartment in which biochemical processes are corralled within bespoke biophysical conditions and act as storage depots, powerhouses, waste storage/recycling units and innate immune signalling hubs. A key challenge faced by organelles is to define, and then retain, their identity; this is mediated by complex proteostasis mechanisms including the import of an organelle-specific proteome, the exclusion of non-organellar proteins and the removal of misfolded proteins via dedicated quality control mechanisms. This Special Issue on Organelle Homeostasis provides an engaging, eclectic, yet integrative, perspective on organelle homeostasis in a range of organelles including those from the secretory and endocytic pathways, mitochondria, the autophagy-lysosomal pathway and the nucleus and its sub-compartments. Some lesser-known organelles including migrasomes (organelles that are released by migrating cells) and GOMED (a Golgi-specific form of autophagy) are also introduced. In the spirit of the principles of organelle biology, we hope you find the reviews in this Issue both encapsulating and captivating, and we thank the authors for their excellent contributions.


Assuntos
Retículo Endoplasmático , Organelas , Retículo Endoplasmático/metabolismo , Organelas/metabolismo , Complexo de Golgi/metabolismo , Lisossomos/metabolismo , Mitocôndrias , Homeostase
7.
Science ; 375(6577): eabi4343, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35025629

RESUMO

The outer mitochondrial membrane (OMM) is essential for cellular homeostasis. Yet little is known of the mechanisms that remodel it during natural stresses. We found that large "SPOTs" (structures positive for OMM) emerge during Toxoplasma gondii infection in mammalian cells. SPOTs mediated the depletion of the OMM proteins mitofusin 1 and 2, which restrict parasite growth. The formation of SPOTs depended on the parasite effector TgMAF1 and the host mitochondrial import receptor TOM70, which is required for optimal parasite proliferation. TOM70 enabled TgMAF1 to interact with the host OMM translocase SAM50. The ablation of SAM50 or the overexpression of an OMM-targeted protein promoted OMM remodeling independently of infection. Thus, Toxoplasma hijacks the formation of SPOTs, a cellular response to OMM stress, to promote its growth.


Assuntos
Membranas Mitocondriais/fisiologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/fisiologia , Animais , Linhagem Celular , GTP Fosfo-Hidrolases/metabolismo , Humanos , Membranas Intracelulares/fisiologia , Membranas Intracelulares/ultraestrutura , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/metabolismo , Ligação Proteica , Estresse Fisiológico , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/ultraestrutura , Toxoplasmose/parasitologia , Vacúolos/fisiologia , Vacúolos/ultraestrutura
8.
EMBO Rep ; 23(1): e53210, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34918864

RESUMO

The ER membrane protein complex (EMC) is required for the biogenesis of a subset of tail anchored (TA) and polytopic membrane proteins, including Rhodopsin-1 (Rh1) and the TRP channel. To understand the physiological implications of EMC-dependent membrane protein biogenesis, we perform a bioinformatic identification of Drosophila TA proteins. From 254 predicted TA proteins, screening in larval eye discs identified two proteins that require EMC for their biogenesis: fan and Xport-A. Fan is required for male fertility in Drosophila and we show that EMC is also required for this process. Xport-A is essential for the biogenesis of both Rh1 and TRP, raising the possibility that disruption of Rh1 and TRP biogenesis in EMC mutants is secondary to the Xport-A defect. We show that EMC is required for Xport-A TMD membrane insertion and that EMC-independent Xport-A mutants rescue Rh1 and TRP biogenesis in EMC mutants. Finally, our work also reveals a role for Xport-A in a glycosylation-dependent triage mechanism during Rh1 biogenesis in the endoplasmic reticulum.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Drosophila , Chaperonas Moleculares , Proteínas Repressoras , Rodopsina , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Rodopsina/genética
9.
FEBS J ; 288(12): 3624-3627, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34152675

RESUMO

The word 'metabolism' is derived from the Greek word µÎµταßολή (metabole), denoting 'change'. True to this definition, it is now appreciated that a cell or tissue cannot change its behaviour without altering its metabolism. Hence, most key cell decision-making processes are tightly coupled to metabolic change. Conversely, perturbations in metabolite abundance or flux can alter cellular (and whole-body) function profoundly, giving rise to disease. This Special Issue on Systemic and Cellular Metabolism and Disease provides an integrative perspective on the importance of metabolism for health and disease alike. Spanning several orders of scale (from metabolites, proteins, organelles, organs/tissues and whole-body physiology), these review articles cover a breadth of topics, including the importance of metabolites as signalling regulators, metabolic disease, immunity, organelle function/dysfunction, ageing and neurodegenerative disease. One of the emergent themes is that just as metabolism is the fulcrum of biology, metabolic perturbances underpin most forms of acute, chronic, infectious and non-infectious human disease; ageing and senescence could be similarly viewed. Arguably most diseases are metabolic diseases; hence, modulating metabolism may help to 'change' disease outcomes.


Assuntos
Envelhecimento/metabolismo , Doenças Metabólicas/metabolismo , Redes e Vias Metabólicas/genética , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/metabolismo , Envelhecimento/genética , Animais , Regulação da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Mitocôndrias/genética , Neoplasias/genética , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , RNA Circular/genética , RNA Circular/metabolismo , Transdução de Sinais
10.
FEBS J ; 287(19): 4102-4105, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33026715

RESUMO

This Special Issue comprises twelve authoritative reviews that highlight an understudied but rapidly developing area of biology: catalytically inactive enzyme homologs. These pseudoenzymes, sometimes called 'dead enzymes', are found within most enzyme families and generally arose via gene duplication events. Dead enzymes have lost their enzymatic capacity, often via the evolutionary loss of key catalytic residues. However, as this Special Issue highlights, pseudoenzymes are far from being functionally 'dead'. In fact, they fulfill a range of critical biochemical roles, frequently appearing more versatile as biochemical regulators than their catalytic cousins. The functions of dead enzymes from diverse enzyme families often follow recurring themes, including allosteric regulation of their catalytically active counterparts, acting as signaling scaffolds, or as inhibitors that recognize and sequester the substrates of their catalytic homologs. As well as highlighting the breadth and depth of dead enzyme biology, this Special Issue emphasizes the power of pseudoenzymes as key biochemical regulators in health and disease and potentially as more tractable drug targets than some enzymes themselves. We hope you find these reviews enlivening, and we thank the authors for these excellent contributions.


Assuntos
Enzimas , Proteínas/química , Proteínas/metabolismo , Enzimas/química , Humanos
11.
FEBS J ; 287(19): 4261-4283, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32894651

RESUMO

Rhomboid pseudoproteases are catalytically inactive members of the rhomboid superfamily. The founding members, rhomboids, were first identified in Drosophila as serine intramembrane proteases that cleave transmembrane proteins, enabling signaling. This led to the discovery of the wider rhomboid superfamily, a clan that in metazoans is dominated by pseudoproteases. These so-called rhomboid pseudoproteases inherited from their catalytically active ancestors a conserved rhomboid-like domain and a propensity to regulate signaling. Lacking catalytic activity, they developed new 'pseudoenzyme' functions that include regulating the trafficking, turnover, and activity of their client proteins. Rhomboid pseudoproteases have preeminent roles in orchestrating immune cell activation, antiviral responses, and cytokine release in response to microbial infection, or in chronic diseases, and have also been implicated in growth factor signaling, cancer, and, more recently, metabolism. Here, we discuss the mechanism(s) of action of rhomboid pseudoproteases, contrasted with rhomboid proteases. We also highlight the roles of rhomboid pseudoproteases in mammalian physiology, which, quite paradoxically among pseudoenzymes, is understood much better than active rhomboids.


Assuntos
Proteínas de Membrana/metabolismo , Peptídeo Hidrolases , Animais , Humanos
12.
Mol Metab ; 31: 67-84, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918923

RESUMO

OBJECTIVE: Obesity is the result of positive energy balance. It can be caused by excessive energy consumption but also by decreased energy dissipation, which occurs under several conditions including when the development or activation of brown adipose tissue (BAT) is impaired. Here we evaluated whether iRhom2, the essential cofactor for the Tumour Necrosis Factor (TNF) sheddase ADAM17/TACE, plays a role in the pathophysiology of metabolic syndrome. METHODS: We challenged WT versus iRhom2 KO mice to positive energy balance by chronic exposure to a high fat diet and then compared their metabolic phenotypes. We also carried out ex vivo assays with primary and immortalized mouse brown adipocytes to establish the autonomy of the effect of loss of iRhom2 on thermogenesis and respiration. RESULTS: Deletion of iRhom2 protected mice from weight gain, dyslipidemia, adipose tissue inflammation, and hepatic steatosis and improved insulin sensitivity when challenged by a high fat diet. Crucially, the loss of iRhom2 promotes thermogenesis via BAT activation and beige adipocyte recruitment, enabling iRhom2 KO mice to dissipate excess energy more efficiently than WT animals. This effect on enhanced thermogenesis is cell-autonomous in brown adipocytes as iRhom2 KOs exhibit elevated UCP1 levels and increased mitochondrial proton leak. CONCLUSION: Our data suggest that iRhom2 is a negative regulator of thermogenesis and plays a role in the control of adipose tissue homeostasis during metabolic disease.


Assuntos
Proteínas de Transporte/metabolismo , Obesidade/metabolismo , Termogênese , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/induzido quimicamente
13.
Sci Signal ; 12(605)2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31662485

RESUMO

iRhom2 is an essential cofactor for ADAM17, the metalloprotease that sheds both the proinflammatory cytokine tumor necrosis factor-α (TNF-α) and TNF receptors (TNFRs) from the cell surface. In this issue of Science Signaling, Sundaram et al. demonstrate a protective role for iRhom2 in promoting ADAM17-mediated shedding of TNFRs in hepatic stellate cells, which reduces TNFR signaling and liver fibrosis in response to injury.


Assuntos
Colestase , Receptores do Fator de Necrose Tumoral , Proteína ADAM17 , Humanos , Cirrose Hepática , Transdução de Sinais , Fator de Necrose Tumoral alfa
14.
Elife ; 72018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29897333

RESUMO

The apical inflammatory cytokine TNF regulates numerous important biological processes including inflammation and cell death, and drives inflammatory diseases. TNF secretion requires TACE (also called ADAM17), which cleaves TNF from its transmembrane tether. The trafficking of TACE to the cell surface, and stimulation of its proteolytic activity, depends on membrane proteins, called iRhoms. To delineate how the TNF/TACE/iRhom axis is regulated, we performed an immunoprecipitation/mass spectrometry screen to identify iRhom-binding proteins. This identified a novel protein, that we name iTAP (iRhom Tail-Associated Protein) that binds to iRhoms, enhancing the cell surface stability of iRhoms and TACE, preventing their degradation in lysosomes. Depleting iTAP in primary human macrophages profoundly impaired TNF production and tissues from iTAP KO mice exhibit a pronounced depletion in active TACE levels. Our work identifies iTAP as a physiological regulator of TNF signalling and a novel target for the control of inflammation.


Assuntos
Proteína ADAM17/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Fator de Necrose Tumoral alfa/genética , Proteína ADAM17/genética , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Linhagem Celular , Proteínas do Citoesqueleto/genética , Endossomos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos/citologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , Ligação Proteica , Proteólise , Células RAW 264.7 , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
15.
J Cell Sci ; 131(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496898

RESUMO

It was a sunny Ericeira, in Portugal, that received the participants of the EMBO Workshop on Proteostasis, from 17 to 21 November 2017. Most participants gave talks or presented posters concerning their most recent research results, and lively scientific discussions occurred against the backdrop of the beautiful Atlantic Ocean.Proteostasis is the portmanteau of the words protein and homeostasis, and it refers to the biological mechanisms controlling the biogenesis, folding, trafficking and degradation of proteins in cells. An imbalance in proteostasis can lead to the accumulation of misfolded proteins or excessive protein degradation, and is associated with many human diseases. A wide variety of research approaches are used to identify the mechanisms that regulate proteostasis, typically involving different model organisms (yeast, invertebrates or mammalian systems) and different methodologies (genetics, biochemistry, biophysics, structural biology, cell biology and organismal biology). Around 140 researchers in the proteostasis field met in the Hotel Vila Galé, Ericeira, Portugal for the EMBO Workshop in Proteostasis, organized by Pedro Domingos (ITQB-NOVA, Oeiras, Portugal) and Colin Adrain (IGC, Oeiras, Portugal). In this report, we attempt to review and integrate the ideas that emerged at the workshop. Owing to space restrictions, we could not cover all talks or posters and we apologize to the colleagues whose presentations could not be discussed.


Assuntos
Biofísica/tendências , Homeostase/genética , Dobramento de Proteína , Proteostase/genética , Movimento Celular/genética , Humanos , Proteólise
16.
Cell Death Dis ; 8(12): e3176, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215607

RESUMO

Secretory granules released by cytotoxic T lymphocytes (CTLs) are powerful weapons against intracellular microbes and tumor cells. Despite significant progress, there is still limited information on the molecular mechanisms implicated in target-driven degranulation, effector cell survival and composition and structure of the lytic granules. Here, using a proteomic approach we identified a panel of putative cytotoxic granule proteins, including some already known granule constituents and novel proteins that contribute to regulate the CTL lytic machinery. Particularly, we identified galectin-1 (Gal1), an endogenous immune regulatory lectin, as an integral component of the secretory granule machinery and unveil the unexpected function of this lectin in regulating CTL killing activity. Mechanistic studies revealed the ability of Gal1 to control the non-secretory lytic pathway by influencing Fas-Fas ligand interactions. This study offers new insights on the composition of the cytotoxic granule machinery, highlighting the dynamic cross talk between secretory and non-secretory pathways in controlling CTL lytic function.


Assuntos
Degranulação Celular/imunologia , Citotoxicidade Imunológica , Proteína Ligante Fas/genética , Galectina 1/genética , Linfócitos T Citotóxicos/imunologia , Receptor fas/genética , Animais , Proliferação de Células , Proteína Ligante Fas/imunologia , Galectina 1/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteômica , Vesículas Secretórias/química , Vesículas Secretórias/imunologia , Vesículas Secretórias/metabolismo , Transdução de Sinais , Linfócitos T Citotóxicos/citologia , Receptor fas/imunologia
17.
Cell Rep ; 21(3): 745-757, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045841

RESUMO

Cell surface metalloproteases coordinate signaling during development, tissue homeostasis, and disease. TACE (TNF-α-converting enzyme), is responsible for cleavage ("shedding") of membrane-tethered signaling molecules, including the cytokine TNF, and activating ligands of the EGFR. The trafficking of TACE within the secretory pathway requires its binding to iRhom2, which mediates the exit of TACE from the endoplasmic reticulum. An important, but mechanistically unclear, feature of TACE biology is its ability to be stimulated rapidly on the cell surface by numerous inflammatory and growth-promoting agents. Here, we report a role for iRhom2 in TACE stimulation on the cell surface. TACE shedding stimuli trigger MAP kinase-dependent phosphorylation of iRhom2 N-terminal cytoplasmic tail. This recruits 14-3-3 proteins, enforcing the dissociation of TACE from complexes with iRhom2, promoting the cleavage of TACE substrates. Our data reveal that iRhom2 controls multiple aspects of TACE biology, including stimulated shedding on the cell surface.


Assuntos
Proteína ADAM17/metabolismo , Proteínas de Transporte/metabolismo , Proteólise , Proteínas 14-3-3/metabolismo , Animais , Proteínas de Transporte/química , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Fosfosserina/metabolismo , Transdução de Sinais , Especificidade por Substrato , Receptores Toll-Like/metabolismo
18.
Sci Rep ; 7(1): 7283, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28779096

RESUMO

Rhomboids are intramembrane serine proteases conserved in all kingdoms of life. They regulate epidermal growth factor receptor signalling in Drosophila by releasing signalling ligands from their transmembrane tethers. Their functions in mammals are poorly understood, in part because of the lack of endogenous substrates identified thus far. We used a quantitative proteomics approach to investigate the substrate repertoire of rhomboid protease RHBDL2 in human cells. We reveal a range of novel substrates that are specifically cleaved by RHBDL2, including the interleukin-6 receptor (IL6R), cell surface protease inhibitor Spint-1, the collagen receptor tyrosine kinase DDR1, N-Cadherin, CLCP1/DCBLD2, KIRREL, BCAM and others. We further demonstrate that these substrates can be shed by endogenously expressed RHBDL2 and that a subset of them is resistant to shedding by cell surface metalloproteases. The expression profiles and identity of the substrates implicate RHBDL2 in physiological or pathological processes affecting epithelial homeostasis.


Assuntos
Epitélio/metabolismo , Homeostase , Proteoma , Proteômica , Serina Proteases/metabolismo , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Células Epiteliais/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteômica/métodos , Serina Endopeptidases , Serina Proteases/genética , Especificidade por Substrato
19.
Semin Cell Dev Biol ; 60: 29-37, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27378062

RESUMO

Rhomboids, proteases containing an unusual membrane-integral serine protease active site, were first identified in Drosophila, where they fulfill an essential role in epidermal growth factor receptor signaling, by cleaving membrane-tethered growth factor precursors. It has recently become apparent that eukaryotic genomes harbor conserved catalytically inactive rhomboid protease homologs, including derlins and iRhoms. Here we highlight how loss of proteolytic activity was followed in evolution by impressive functional diversification, enabling these pseudoproteases to fulfill crucial roles within the secretory pathway, including protein degradation, trafficking regulation, and inflammatory signaling. We distil the current understanding of the roles of rhomboid pseudoproteases in development and disease. Finally, we address mechanistically how versatile features of proteolytically active rhomboids have been elaborated to serve the sophisticated functions of their pseudoprotease cousins. By comparing functional and structural clues, we highlight common principles shared by the rhomboid superfamily, and make mechanistic predictions.


Assuntos
Doença , Saúde , Proteínas Mitocondriais/metabolismo , Animais , Humanos , Modelos Biológicos , Peptídeo Hidrolases/metabolismo , Transporte Proteico
20.
Sci Rep ; 6: 27342, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27264103

RESUMO

Rhomboid intramembrane proteases are the enzymes that release active epidermal growth factor receptor (EGFR) ligands in Drosophila and C. elegans, but little is known about their functions in mammals. Here we show that the mammalian rhomboid protease RHBDL4 (also known as Rhbdd1) promotes trafficking of several membrane proteins, including the EGFR ligand TGFα, from the endoplasmic reticulum (ER) to the Golgi apparatus, thereby triggering their secretion by extracellular microvesicles. Our data also demonstrate that RHBDL4-dependent trafficking control is regulated by G-protein coupled receptors, suggesting a role for this rhomboid protease in pathological conditions, including EGFR signaling. We propose that RHBDL4 reorganizes trafficking events within the early secretory pathway in response to GPCR signaling. Our work identifies RHBDL4 as a rheostat that tunes secretion dynamics and abundance of specific membrane protein cargoes.


Assuntos
Retículo Endoplasmático/metabolismo , Exossomos/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...